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I. Model Output Postprocessing  

A typical operational forecast model may produce of the order of a hundred or so different 

forecast fields – usually referred to as diagnostics. However, there is often a much smaller set 

of diagnostic fields that a forecaster or forecasting team will make regular use of. Obvious 

things that forecasters might want to look at are maps of precipitation intensity, wind speed 

and temperature through the forecast period, but these fields by themselves are often not 

enough. If an ensemble of forecasts is run even more information can be produced. 

Nevertheless, a numerical model will not produce one forecast of a particular variable at each 

grid point of the model.  

Further, the forecasts are associated with the errors from multiple sources which have 

detrimental effect on the model skill. The primary source of these errors includes 1) sensitivity 

to initial conditions; 2) boundary condition errors and 3) model structural errors. Model 

structural errors include a missing or poor representation of subgrid dynamical and physical 

processes and inaccuracies associated with the numerical scheme. All these numerical weather 

predictions (NWP) model deficiencies induce errors that are rapidly amplified in time due to 

the chaotic nature of the model dynamics, and in turn affect the course of the forecasts by 

inducing what are often called systematic and random errors. The first two sources of errors 

can be partly removed by the nudging the basic state of a model towards the reanalysis while 

the third source of error can be reduced using the statistical postprocessing techniques. 

The basic definition of postprocessing can be understood like this, let’s say the model grid-

resolution is around 25–50 km square. A single value of minimum temperature or precipitation 

or any other field variable in this grid box may not represent the local features and mask the 

local variability. This is particularly true if that grid box contains a land region with appreciable 

local topography and maybe also contains contrasts between rural and urban areas. Even in a 

high-resolution regional model with grid boxes perhaps 5 km square, a single value of some 

variables may still mask quite a lot of local variation. The obvious answer to this problem is to 

increase the resolution of the model so that the local variations in terrain and land surface type 

which lead to the variations are themselves resolved. This is a somewhat impractical solution 

as most NWP centres are already running their NWP systems at the highest resolution that is 

allowed by the constraints of the available computing power. A more pragmatic solution is to 

put the output of the NWP model through some sort of further processing in order to incorporate 

some local variability. This approach is usually referred to as ‘post-processing’.  
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The post processing of model output should be viewed as an integral part of the modeling 

system, at least for operational applications. This processing can take many forms, but one 

involves the use of methods for reducing the systematic error in the forecast products. The 

resulting better correspondence with observations will result in improved predictability for the 

entire system. The following subsections review various methods for statistically correcting 

NWP model forecasts in order to reduce the systematic error. The static methods require the 

use of a lengthy period of model reforecasts in order to define the statistical corrections based 

on relationships between past model output and past observations.  

Note: Only systematic error is reduced by these methods except Kalman Filter (KF) based bias-

correction approach. The random errors that result from numerically induced phase errors in 

the propagation of features, the smoothing of small-scale propagating features associated with 

insufficient model resolution, and other causes, will remain in the solution and cannot be 

statistically removed. However, the systematic error can represent a significant fraction of the 

total error, especially near the ground, so removing it through the use of post-processing 

methods can be very beneficial. 

Operational dynamical forecasting began in 1956 in the U.S. and dissemination to the public 

of products derived from statistically postprocessed dynamical forecasts was initiated in 1968. 

These early forecasts were based on a technique known as “perfect prog” (e.g., Wilks, 2011), 

which required no training data from the dynamical model. Shortly thereafter, the preferred 

model output statistics (MOS, Glahn & Lowry, 1972) method began to be used when 

sufficient dynamical-model training data became available. 

A.  Model Output Statistics (MOS) 

This method, when applied under ideal circumstances, is the gold standard of NWP model 

output post-processing (Glahn and Lowry, 1972). MOS is essentially multiple linear 

regression, where the predictors ℎ௡௝ are model forecast variables (e.g., temperature, humidity, 

or wind at any grid point, either near the surface or in the upper levels), and may also include 

other astronomical or geographical parameters (such as latitude, longitude and time of the year) 

valid at time ݐ௡. The predictand ݕ௡ is a station weather observation (e.g., maximum temperature 

or wind speed) valid at the same time as the forecast. Here, as in any statistical regression, the 

quality of the results improves with the quality and length of the training data set used to 

determine the regression coefficients ௝ܾ . 
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The dependent data set used for determining the regression coefficients is 

 

where we consider one predictand ݕ௡as a function of time ݐ௡ and ܬ predictors ℎ௡௝. 

The linear regression (forecast)equation is 

 

where for convenience the predictors associated with the constant term ܾ଴ are defined as ℎ௡଴≡ 

1. In linear regression the coefficients ௝ܾ are determined by minimizing the sum of squares of 

the forecast errors over the training period. The sum of squared errors (ܵܵܧ) is given by: 

 

Taking the derivatives with respect to the coefficients ௝ܾ and setting them to zero we obtain: 

 

or 

 

where ℎ௝௡் = ℎ௡௝ . The above Eqns. are the “normal” equations for multiple linear regression 

that determine the linear regression coefficients ௝ܾ , ݆ = 0, … . . ,  In matrix form, they can be .ܬ

written as 

 

where, 
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are, respectively, the dependent sample predictor matrix (model output variables, geographical 

and astronomical parameters, etc.), the vector of regression coefficients, and the vector of 

predictands in the dependent sample. ࢟ෝ = ࢋ ,࢈ࡴ = ࢟  are the linear predictions and the ࢈ࡴ−

prediction error, respectively, in the dependent sample. The dependent estimate of the error 

variance of the prediction is ݏ௘ଶ = ௌௌா
(ேି௃ିଵ)

 since the number of degrees of freedom is ܰ − ܬ −

1. This indicates that one should avoid overfitting the dependent sample by ensuring that ܰ ≫

 .ܬ

It is clear that for a MOS system to perform optimally, several conditions must be fulfilled: 

a. The training period should be as long as possible (at least several years). 

b. The model-based forecasting system should be kept unchanged to the maximum extent 

possible during the training period. 

c. After training, the MOS system should be applied to future model forecasts that also use the 

same unchanged model system. 

These conditions, while favorable for the MOS performance, are not favorable for the 

continued improvement of the NWP model, since they require “frozen” models.  

In summary, the forecast statistical guidance (and in particular MOS)adds value to the direct 

NWP model output by objectively interpreting model output to remove systematic biases and 

quantifying uncertainty, predicting parameters that the model does not predict, and producing 

site-specific forecasts. 

B. The “Perfect Prog” method 

The earliest approach to statistical post processing is known as the Perfect-Prog (PP, perfect-

prognosis) method (Klein et al. 1959). Perfect Prog is an approach similar to MOS, except that 

the regression equations are derived using as predictors, observations or analyses (rather than 

forecasts) valid at the prediction time, as if the forecasts were perfect. The regression 
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relationships are then applied to NWP-model forecasts of the predictors to produce forecasts 

of the predictands. Because the statistical relationships are not generated using model forecasts, 

they do not correct for model error. They simply statistically translate predicted variables into 

unpredicted or poorly predicted variables. In effect, it is assumed that the model prognosis is 

perfect. Because, as noted earlier, current models can explicitly predict many of the quantities 

that previously had to be statistically inferred through the PP method, this approach is less used 

operationally. A benefit of the PP method is that it is not dependent on the model to which it is 

applied, and thus the statistical relationships do not need to be recalculated when the model is 

modified. 

Traditionally, most statistical downscaling methods applied in climate research have been of 

the PP type: the calibration of the statistical model is carried out completely in the real world, 

hence both predictor and predictand data are taken from observations (or observation proxies 

such as reanalyses).  The calibrated model is then applied to predictors derived from model 

data. For this approach to be sensible, the predictors need to be “perfectly” simulated – thus 

the name. As a direct consequence of the calibration setup, the PP approach cannot correct 

model biases. Any bias in the simulated predictors will in general cause a biased downscaling. 

In MOS–type downscaling methods, the calibration links predictors from a numerical model 

to observed predictands. Potential model biases already enter the calibration procedure and are 

thus taken into account by construction. If a model is systematically, say, a degree too warm, 

the calibrated MOS will automatically subtract this bias 

The differences between the two post-processing methods have been show below in Figure 1 
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Figure 1: Perfect prognosis versus model output statistics. The top shows the origin of 

predictor and predictand data during calibration, the bottom the same for the actual 

downscaling. 

C. Adaptive regression based on a simple Kalman filter approach 

Adaptive regression based on Kalman filtering is another automatic post-processing method 

employs past observations and forecasts to estimate model bias in future forecasts. This 

method has been mainly used in data assimilation schemes to improve the accuracy of the 

initial conditions for both NWP. However, The KF has also been used for NWP model 

forecasts as a predictor bias correction method during postprocessing of short-term weather 

forecasts.  

In the previous MOS and in other statistical prediction methods such as nonlinear regression 

or neural networks, the regression coefficients are computed from the dependent sample, and 

are not changed as new observations are collected until a new set of MOS equations are derived 

every 5 or 10 years. Because the regression coefficients are constant, the order of the 

observations is irrelevant in MOS, so that older data have as much influence as the newest 

observations used to derive the coefficients. 

In adaptive regression, the Kalman filter equations are applied in a simple, sequential 

formulation to the multiple regression coefficients ܾ௞ =  whose values are updated ,(௞ݐ)ܾ

every time step, rather than keeping them constant as in 
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Let’s make the methodology clearer in the following section in slightly simpler way adopted 

from the Delle Monache et al. (2006) 

In the KF approach, the information of recent past forecasts and observations is used to revise 

the estimate of the current raw forecast. Previous bias values are used as input to KF. The filter 

estimates the systematic component of the forecast errors, or bias. Once the future bias has 

been estimated, it can be removed from the forecast to produce an improved forecast. Such a 

corrected forecast should be statistically more accurate in a least-squares sense. 

Methodology 

The KF models the true (unknown) forecast bias ݔ௧ at time ݐ, by the previous true bias plus a 

white noise ߟ term [Bozic, 1994]: 

௧|௧ି୼௧ݔ = ௧ି୼௧|௧ିଶ୼௧ݔ +  ௧ି୼௧ߟ

where ߟ௧ି୼௧ is assumed uncorrelated in time and is normally distributed with zero-mean and 

variance ߪఎଶ, Δݐ is a time lag (flow figure below), and ݐ|ݐ − Δݐ means that the value of the 

variable at time ݐ depends on values at time ݐ − Δݐ. Because of unresolved terrain features, 

numerical noise, lack of accuracy in the physical parameterizations, and errors in the 

observations themselves, the KF approach further assumed that the forecast error ݕ௧ (forecast 

minus observation at time ݐ) is corrupted from truth by a random errorߝ௧: 

௧ݕ = ௧ݔ + ௧ߝ = ௧ି୼௧ݔ + ௧ି୼௧ߟ +  ௧ߝ

where ߝ௧ is assumed uncorrelated in time and normally correlated in time distributed with zero-

mean and variance ߪఌଶ. Thus, ݕ௧ includes both systematic biases plus random errors. 

Kalman [1960] showed that the optimal recursive predictor of ݔ௧ (derived by minimizing the 

expected mean square error) can be written as combination of the previous bias estimate and 

the previous forecast error. 

ො௧ା∆௧|௧ݔ = ො௧|௧ି∆௧ݔ + ௧ݕ)௧|௧ି∆௧ߚ −  (ො௧|௧ି∆௧ݔ
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where the hat (^) indicates the estimate 

The weighting factor ߚ, called Kalman gain, can be calculated from: 

௧|௧ି∆௧ߚ =
௧ି∆௧|௧ିଶ∆௧݌ + ఎଶߪ

௧ି∆௧|௧ିଶ∆௧݌) + ఎଶߪ +  (ఌଶߪ

where ݌ is the expected mean square error, which can be computed as follows: 

௧|௧ି୼௧݌ = ௧ି୼௧|௧ିଶ୼௧݌) + −ఎଶ)(1ߪ  (௧|௧ି୼௧ߚ

Assume a time lag of Δ24 = ݐ hours is used, today’s forecast bias is estimated using yesterday’s 

bias, which in turn was estimated using the day-before-yesterday’s bias, and so on. Figure 2 

shows the flow diagram of the KF algorithm.  

 

Figure 2: Flow diagram of the Kalman filter bias estimator. It uses a predictor corrector 
approach, starting with the previous estimate of the bias (ݔො௧|௧ି௱௧) and correcting it by a 
fraction (ߚ) of difference between the previous bias estimate and previous observed forecast 
error (ݕ௧)) to estimate the future bias (ݔො௧ା∆௧|௧). 
 
D. Weather generators 
 
Even though model time steps may be relatively short - perhaps tens of minutes – much of the 

short-time-scale variability associated with some phenomena is not represented in the model 

solution. For example, precipitation rates in nature can be highly variable, as rain bands, or 

other small convective features that are in various stages of their life cycle, pass across a 

location. Variability on these time scales is not represented in most operational models. This 

is especially true for large AOGCM grid boxes for which the time series of variables are 
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smoother than those that apply to single points, simply because of the averaging that is implied 

over the large area. Unfortunately, high-frequency rain rates are needed for many hydrological 

applications, where the rate determines the partitioning of the rainwater between runoff and 

infiltration. Another example of high-frequency variability that is not represented in NWP 

models is wind gustiness, which is needed in models of dust elevation and transport, ocean 

waves, etc. To address such needs for high-frequency information from NWP and climate 

models, synthetic high-resolution time series can be generated with what are called stochastic 

weather generators. These methods essentially postprocess the model-generated time series, 

adding realistic higher-frequency variability. For NWP model simulations, the weather 

generators can add high-frequency spatial and temporal variations in the precipitation rate. 
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